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-4.1 Introduction:

The RPI task has been concerned with the development of expert systemz techniques

for automated photointerpretation. More specifically, our efforts have been directed toward

the development, implementation and demonstration of techniques which will mimic the

job of a trained photoanalyst in interpreting objects in monochrome, single-frame aerial

images. This is a difficult task which requires a combination of numerical and symbolic

image processing techniques.

During the course of this effort we have developed a novel hierarchical, region-based

approach to automated photointerpretation (cf. [1]). Basically, this approach proceeds

by first segmenting the input image into disjoint regions which differ in tonal or textural

properties. The spatial relationships between different regions are then expressed in terms

of the associated adjacency graph where nodes represent regions and the connectivity

indicates regions which are spatially contiguous. Based upon knowledge of the underlying

spatial adjacency graph, together with various self and mutual region attributes or features,

the problem is then that of assigning interpretations, or object categories, to each of the

nodes. This is generally a computationaly explosive task. The novelty of our approach

is that we have been able to develop a computationally feasible approach to this symbolic

interpretation process.

The advantage of our approach is based upon two important properties: First, we

model the interpretation process as a Markov random field (MRF) defined or the adjacency

graph. Secondly, we make use of an efficient stochastic relaxation process to find the

most likely interpretation. The first assumption allows us to localize the search for good

interpretations while the second helps in avoiding the otherwise computationally explosive

nature of the search for optimum interpretations.

Our major effort during FY'87 has been in refining this region hierarchical approach,

improving the initiA.l segmentation process and, finally, demonstrating the approach on

real-world aerial photographs. The present report is an attempt to document this progress

of the last year.

This final report is organized as follows: In the remainder of this Section we provide

an overview of the current status of our hierarchical, region-based approach to automated
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photointerpretation. This is followed, in Section 4.2, by a detailed development of an un-

supervised tonal segmentation scheme under a Gaussian modeling assumption. In Section

4.3 we describe a corresponding texture segmentation technique based upon MRF's. Sub-

sequently, in Section 4.4, we describe a novel approach, based upon information theoretic

concepts, for determination of the number of distinct image classes in an image. This latter

issue is crucial to any fully automated image interpretation scheme. Finally, in Section

4.5, we provide a summary and an outline of research directions for FY'88.

4.1.1 Image Interpretation Approach:

In this section we will describe the current status of our automated photointerpretation

system, review the pertinent details of the evolving testbed which will support it and

illustrate some typical results obtained so far.

A block diagram of the overall testbed structure is illustrated in Fig. 4.1-1. The main

funct*on of the preprocessor is to provide a segmentation of the image into disjoint regions

which are homogeneous ,vithin a region but differ in some sense from adjacent regions. In

the next several Sections, we describe various segmentation schemes investigated for this

purpose. For the time being then we assume that a segmentation has been obtained.

Once a segmentation is obtained, however preliminary, the regions are indexed and re-

gion maps are stored in the image database. That is, the actual pixel values associated with

a region are stored separately for each region. In addition, various attributes associated

with each region are stored. This includes such parameters as area, perimeter, boundary,

elongation, etc. In addition, the spatial relationships between the various regions are main-

tained. This is most easily done by using an adjacency graph where the nodes correspond

to regions and the connectivity indicates spatial relationships. In particular, two nodes

are connected by an arc or edge if they are in some sense spatial neighbors. The values

associated with arcs can include mutual information corresponding to the connected nodes.

This information might include: mutual boundaries, spatial distances, strength of mutual

edges, etc. Image interpretations are provided by the inferencing mechanism which has

access to the region information stored in the image database, as well as the world knowl-

edge stored in the knowledge database. Feedback to the image preprocessor is through the

inferencing mechanism.
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It should be noted from Vig. 4.1-1 that the testbed allows operator intervention

through an interactive image processing and display terminal. More specifically, the op-

erator can manually extract regions using a joystick or trackball and, if desired, actually

provide interpretation of the iarious extracted regions. Once the disjoint regions are out-

lined by the operator, the various region attributes are automatically extracted and stored

in the image database in exactly the same format as if they were automatically extracted

by the image preprocessor. Furthermore, in cases where the operator provides region in-

terpretations, the relevant spatial relationships are provided to the knowledge database

allowing updating of our world knowledge.

Now suppose that an appropriate initial segmentation is obtained. Let the distinct

regions be labeled R 1,R 2 ,.. . ,R as, for example, in Fig. 4.1- 2 where N = 7. The corre-

sponding first-order adjacency graph associated with this segmented image then appears

as indicated in Fig. 4.1-3. By first-order adjacency we mean here that regions are adjacent,

or are neighbors, if and only if they are spatially contiguous. The problem is now: given

an initial segmentation, to provide a global interpretation for each of the nodes given mea-

surement attributes associated with each node, context information associated with the

mutual relationships specified in the adjacency graph and world knowledge as prescribed

in the knowledge database. A detailed description of our approach to implementing this

interpretation function was provided previously in [11. As a result, the following discussion

of the major characteristics of this approach will be abbreviated and will depend upon the

more extensive development in [1] for details.

Suppose then that the segmented regions within the image are labeled R 1 , R 2 ,.. .,RN

and let I, I,. . ,IN be the corresponding global interpretations given to each of these

regions where Ii{k,1,2,...,K}. Here, we have K specific object types whose labels

are to be assigned to each of the regions plus the ambiguous or irrelevant object type

represented by the label or symbol 0. Suppose we define the region information as R

(1,,R2,...,RN) and the interpretation vector I = (I1,I2,...,IN). Note there are at

most (K 1 1)N possible interpretation vectors although, in reality, there are many fewer

than this since a valid global interpretation should not allow neighboring, or adjacent,

regions to carry identical labels except for the uncertain symbol, 0. The exact number
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of interpretation vectors will then depend specifically upon the spatia arrangements of

regions and is thus a random variable.

Our criterion will be to choose the estimated global interpretation I ,, iff

10 - argmaxp{IL£,K,X} (1)
I

Here, R rep,-esents information describing the partitioning into regions, K represents in-

formation in the knowledge database and X represents the corresponding adjacency graph

which includes all measurement information, both for each region separately as well as

mutual measurement information between regions. The quantity p{IV , K, X} represents

the conditional probability of I given R, K and X. This quantity may be difficult to specify

theoretically, but the work in T prc -ided a nice theoretical framework for specifiying the

structure of this conditional probability. The optimization in (1) is then over all legitimate

interpretation vectors; the resulting estimate is called the maximum a posteriori (MAP)

estimate and is well-founded in statistical decision and estimation theory [2].

At this point we will make the assumption that, conditioned on R, K and X, the

interpretation vector I is a Markov random field (MRF) defined on the corresponding

adjacency graph. The concept of a MRF defined on a 2-D lattice has provided a useful

model for images. However, as pointed out in [3], the concept of a MRF need not be

restricted to lattices but can be defined on more general structures such as graphs. Thus,

it appears quite natural to define the interpretation vector, I, as a MRF defined on the

associated adjacency graph.

Under the assumption that I is then a conditional MRF, it's well known through

the equivalence of MRF's with Gibbs random fields (GRF's), that the the conditional

probability must be of the form

p{IJ,,K,X} = Z , (2)

where U(I; R, K, X) is the associated Gibbs energy function and Z is the corresponding

partition function which serves the role of a normalization constant. More specifically, we

have
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I (3)

where the sutnmation is over all legitimate interpretation vectors. The energy function

niust then be designed to take into account the information represented by R, K and X.

As can be seen fron (1) and (2), the MAP estimate is obtained by minimizing the

energy function. This is a difficult combinatorial problem since, azs we have noted previ-

ously, there are as many as (K , ])"' possible interpretation vectors, I. In 1' we proposed

and described the use of a stochastic relaxation procedure, called simulated annealing, to

overcome these combinatorial problems. More specifically, simulated annealing was used

to obtain the maximum of p{I j, K, X }.

Now consider the choice of a Gibbs energy function. It's well-known (cf. 8) that this

Must be t the form

L(1;RK, X) =,),(4)

where V.(1; , K. X) is called a clique function and the summation in (4) is over all

possible cliques with 1, the restriction of I to the clique c. Cliques and clique functions

are described in more detail in [1]. In particular, we showed that the summation in [4] can

be rewritten as

N
U(I; R, K, X) =E VJ(I,- R,K, X). (5)

i-=1 e fC,

Here, the outer sum is over the individual nodes while the inner sum is over the set of

distinct cliques, Cj, associated with i = 1, 2,... , N.

As pointed out in [1i, the outstanding problem at this point then is in the determina-

tion and specification of an a')propriate set of clique functions. At that time we suggested

some ways in which these clique functions could be chosen in some simple illustrative prob-

lerns. During the past year we have studied several refinements in t.,! selection of clique

functions and have applied this scheme to several sets of synthetic as well as real-world

irriaes. Our work here is incomplete and we expect to actively pursue these investigations
throughout FY'8.
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In the following Sections of this report we will describe in some detail the rather ex-

tensive work we have completed in FY'87 concerned with segmentation techniques. Again

it must be emphasized that, regardless of the image interpretation techniquo employed,

the results are highly dependent on having a good initial segmentation.

References for Section 4.1

1. J. WV. Modestino, "A Hierarchial Region-Based Approach to Automated Photointer-

pretation", NAIC Final Report for FY'86.

2. It. L. Van Trees, Detection, Estimation and Modulation Theory I, Wiley and Sons,

New York. 1968.

3. H. Kinderman and J. L. Snell, Markov Random Fields and Their Applications, Amer-

ican Mathematical Society, Providence, RI, 1980.
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Fig. 4.1-1 Automated Photointerpretation Testbed
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Fig. .1.1-2 An Initial Segmentation of an Image
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Fig. 4.1-3 Adjacency Graph for Segmented Image
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4.2 Unsupervised Image Segmentation Using A Gaussian Model:

A Gaussian random field model-based maximum-likelihood (ML) approach to image

segmentation is described in this section. In this approach, the segmentation problem is

formulated as a statistical decision problem under a Gaussian modeling assumption for

different image classes. The model parameters are estimated directly from the observed

image, resulting in an unsupervised algorithm. The results of applying this algorithm to

the segmentation of aerial images are also described.

4.2.1 Background:

Image segmentation is a very important problem in many image processing applica-

tions. In an image segmentation problem, an observed image is separated into regions

of different properties. Two of the most important properties used are tone and texture

i[. Tone is related to the average gray level of a region while texture corresponds to the

spatial distribution of different gray levels in a region. As pointed out in [1], different

regions in an image sometimes exhibit mainly one or the other of these two properties.

When the spatial variation of gray levels in a region is small and uncorrelated, the region

is dominated by tone. On the other hand, if the spatial variation of gray levels is large or

correlated, the region is dominated by texture. This domination is not only determined by

the particular image scene, but more often by the resolution of the image. In this paper,

we are mainly concerned with images whose regions are dominated by tonal properties.

Surveys of texture segmentation techniques can be found in [1J, [12], [141. Examples of

the type of image for which tonal properties dominate can be found in many aerial pho-

tographs. In these images, the regions correspond to roads and fields, which have little

texture originally, or vegetation regions which show little texture or gray level variation

because of the low resolution of the image.

In many image analysis applications, image segmentation is the first stage of process-

ing and the quality of segmentation is crucial to the overall performance of the system

[2]. This is particularly the case in our application which is in automated photointerpre-

tation [131. Because of its importance in a wide variety of applications, a large number

of image segmentation techniques have been proposed. These techniques can be classified

into two different approaches; a statistical approach, where tonal or textural properties

4.2.1



are characterized in statistical terms, such as mean, variance, correlation functions and

probability distribution functions and a structural approach, where these imagc properties

are described by a properly defined formal language [11. In this paper, we are interested

in a purely statistical approach for image segmentation where the image regions exhibit

mainly tonal properties.

Most of the previously proposed statistical techniques are heuristic or ad hoc in that

they are either based on some ad hoc arguments or derived from certain heuristics about

a specific set of images. The work of Haralick and Shapiro [31 provides a comprehensive

survey of most of the existing heuristic statistical image segmentation techniques, rang-

ing from the reasonably simple to the very complex. Although considerable success has

been achieved by a number of them in some specific and well-defined situations, they have

some unsatisfactory features. For example, it's often difficult to precisely define or choose

the parameters involved in these algorithms, such as the valleys of histograms in vari-

ous histogram-guided thresholding techniques or thresholds for closeness in most region

growing algorithms. Many more sophisticated algorithms require an enormous amount

of computation. In addition, there is little known, in general, on how effective these al-

gorithms are and what type of images they can be applied to. More specifically, there

is no specific modeling assumption made for the image properties and, consequently, the

resulting solution cannot be optimal.

To overcome these difficulties, a number of stochastic model-based image segmenta-

tion techniques have been proposed [41-[81, [141. In a statistical model-based approach,

stochastic modeling assumptions are made for regions of different statistical properties, we

call classes, in an image. Then the segmentation problem is formulated as a statistical

decision problem and an optimal solution is sought. As a result, the stochastic model-

based approach usually provides image segmentation techniques that are more generally

applicable and optimal according to some well-defined criterion.

Most of the stochastic model-based techniques, however, exploit textural properties

rather than tonal properties; hence these are texture segmentation techniques. One of the

few techniques which mainly makes use of tonal properties or, more precisely, attempts to

model tonal properties, is an algorithm proposed by Derin and Elliot [5]. In this technique,

4.2.2



different image regions are modeled by a constant gray level with additive white Gaussian

noise which has the same mean and variance over the entire image while the distribu-

tion of different regions is modeled by a Markov random field (MRF), or Gibbs random

field (GRF). The segmentation problem is then formulated as a maximum a posteriori

(MAP) estimation problem. The maximization of the a posteriori probability functional is

performed using a- , approximate dynamic programming procedure. This algorithm is par-

tially unsupervisel in that the model parameters for the regions are estimated directly from

the observed image by the moment method of Gaussian mixture estimation although the

model parameters for the MRF model which generates the regions must be pre-specified.

The choice of underlying MRF parameters is made heuristically. While some successful

examples are shown in [5], this algorithm is computationally quite involved. Both dynamic

programming and the mixture estimation procedure require considerable computation. In

their approach, the image classes are modeled as having constant gray levels corrupted by

additive observation noise. This is a rather unrealistic assumption since many image re-

gions that appear to have uniform gray-levels have gray level variation in them in addition

to the additive observation noise. Finally, it's not very clear how the model parameters for

the MRF of the region distribution should be selected. Recently, it has been shown that

the parameters for the MRF can be estimated through an EM (Expectation- Maximiza-

tion) type algorithm [12j. A disadvantage is that the amount of computation required is

quite large.

In this paper, we describe a novel stochastic model-based image segmentation ap-

proach which provides a simpler alternative and overcomes some of the unsatisfactory

features of Derin and Elliot's technique. First of all, we model different image classes, or

region types, as independent Gaussian random fields with different spatially constant mean

and variances. The constant mean of a class is used to model the flat gray level, or tone, of

the region and the class-dependent variance is used to model the combined effects of varia-

tion of gray levels and additive observation noise which is assumed to be zero mean for that

class. Assuming the variation of gray level in a region is relatively small, our model is a

tonal model. Unlike Derin and Elliot's algorithm, we do not make any assumptions on the

distribution of different regions in the image, since it is quite involved to estimate the MRF
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model parameters and perform the MAP operation. This results in a maximum-likelihood

(ML) approach. By using the independence assumption, the likelihood functional can be

maximized through a highly parallel operation; even using a raster scan, this can be quite

-imply done in one scan. Finally, the model parameters for different image classes can be

estimated by using a computationally efficient clustering technique operating directly on

the observed image. Hence this approach is entirely unsupervised. This algorithm has been

applied to a set of aerial photographs and the results are shown to be quite promising.

-1.2.2 The Gaussian Model and ML Segmentation:

In this paper, we consider an image as an array of gray levels defined on a two-

dimensional (2-D) lattice of finite extent. In particular, we denote an image by x where

x = {x(m,n),(m,n)cL}; L = {(m, n), 1 < m, n < N}. (1)

A random field is a family of random variables defined over the lattice L. In this paper,

we use capital letters for random fields and random variables, lower-case letters for real-

izations of random fields and sample values of random variables. A Gaussian random field

representing an observed image can then be defined as

X(m, n) = f(m,n) + W(m,n); (m, n)EL, (2)

where f(m, n) is the mean and W(m, n) is a zero-mean Gaussian random sequence, i.e.,

W(m,n) - N(O,er2 (m,n)). In particular, we assume f(m,n) and u 2 (m,n) are constant,

but unknown, for an image class and vary for different classes. In addition, we assume that

the X(m, n)'s are independent. The probability density function of the observed random

field is then simply

1 ___ _(x((m, n) - f(m,n))2
p(x) ( L V ra(m, n)e[ - 2u 2 (m,n) (3)

(rn, n) rL

Under a stochastic modeling assumption, the image segmentation problem can be

formulated as a statistical decision problem. Here we take the basic formulation of the

segmentation problem as in [41, [71, [81. Assume that there are K possible image classes

associated with the K hypotheses, Hk, k :- 1, 2,..., K. Suppose that they are distributed
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in disjoint regions as shown in Fig. 4.2-1. Each of the image classes is modeled by an

independent Gaussian model corresponding to a particular hypothesis. That is, we have

the K hypothesis classes

Hk : X(m,n) f(k) + W(k) (m,'); k = 1,2,...,K, (4)

where

W(k) (m, n) - N (0, C2 (k)). (5)

A typical realization of the K-class Gaussian random field image is shown in Fig 4.2-2.,

with K = 3. Here, the regions are first generated by a 2-D MRF and then "colored" by

the appropriate Gaussian model. The model parameter vectors ak, k-=1,2,3, are described

in the next section.

In essence, image segmentation is the process of assigning each pixel in the image

to a correct hypothesis class. According to statistical decision theory, an assignment rule

which minimizes the classification error, assuming equally likely hypothesis, is a threshold

test based on the ratios of the class-conditional likelihood functionals, or some monotone

function of it [91. More specifically, for each point (i,j) in the lattice L, we can construct

a window of size (2M+1)X(2M+1), centered at (i,j) and denoted by Wi~j. The data

contained in the window is denoted by Xi.j. That is, Xi.j= {x(m,n),(m,n)EW 3 }

where

W,. i = (m,n),i - M < m < i + M, )-M < n < J+ MI, (6)

with M << N and boundary effects are ignored. Define the class-conditional log likelihood

functional, given Hk, at (i,J) by

Lk(Xi,-) = log{p(X.jjHk)). (7)

Then a maximum-likelihood approach is to assign pixel position (z,!) to image class ko if

ko = arg max Lk(Xi,,). (8)
I<k<K
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Notice here if we let M = 0, the window will contain only a single pixel which is a ML

estimation approach under an independence assumption on the pixels [7]. As will be shown

later, the segmentation result with M = 0 is somewhat "spotty", and a proper choice of

Al > 0 can smooth out most of the noise spots. Notice also that in this segmentation

algorithm, the decision on any pixel position is independent of those of the others, hence

it -an be iimp!einepted in parallel. However, in our implementation we utilize - raster scan

processirng approach which can be summarized as follows:

L) Process all the pixels in a raster scan order.

2.) At each pixel position, a decision window centered at the pixel is constructed

(ignoring tne boundary effects).

3.) The class-conditional likelihood functional defined in expression (7) can then be

evaluated for each hypothesis.

4.) Assign the pixel to image class k0 , 1 < k0 < K , if it maximizes the class-

conditional likelihood functional as in expression (8).

To carry out the computations in 3.) and 4.) above, the model parameters for each of the

image classes are needed. In the next section, we will describe a method for estimating

the model parameters directly from the image.

4.2.3 Model Parameter Estimation and Segmentation Results:

The parameter estimation technique used in the ML segmentation approach is similar

to those in our previous work [7],[8], which were quite successful in unsupervised texture

segmentation. More specifically, define the model vector for each class or hypothesis,

a ,, = (f(k),u(k)), k = 1,2,. .. ,K. (9)

Then the ak's are the model parameters to be estimated from the observed image. As in [7]

and r8], consider a sliding window of size M, x N 1 , where M << N, N, << N, with each

step of the sliding window being displaced M 2 pixels vertically and N 2 pixels horizontally,

as shown in Fig. 4.2-3. At each position of the sliding window, a Gaussian model vector is

estimated by computing the sample mean and sample variance. This vector is then stored

as a sample vector. Finally, all the sample vectors obtained this way are then usea as input
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to a particular clustering algorithm known as the K-means algorithm 10. The centroids

of the clusters found in the clustering process are then used as model parameter vectors

for the underlying image classes and used in the model-based windowed MI, segmentation

algorithm described in the previous section.

A remaining question with this estimation approach is how K, the number of dif-

ferent image classes, is to be determined. In related work I11], we have proposed use of

an information-theoretic criterion, known as the Akaike Information Criterion (AIC), to

determine the number of classes from the observed image. This scheme has been shown

to provide correct results for synthetic mixture data and reasonable results for real-world

images that are in close agreement with subjective observations. This scheme is directly

applicable to the present situation. In this paper, however, our interest is to see how

effective the segmentation is under reasonable assumptions on the number of classes. By

reasonable, we mean the number of classes is approximately equal to the number of per-

ceptively different tone classes in the image. In the segmentation experiments to follow

then, we assign the number of classes by observing the images.

There are two other problems encountered when implementing the estimation algo-

rithm. The first is how the sliding window size should be selected for model parameter

estimation. Although it is not clear quantitatively how the window size effects the esti-

mation accuracy, we can make some qualitative observations. In general, if the window

is too large, it might contain a significant amount of data from different classes, resulting

in unreliable estimates. On the other hand, if the window is too small, the data might

not be enough to arrive at reasonably accurate estimates. At this point, we choose the

sliding window size heuristically. For example, we noticed in our experiments that most of

the regions have a size greater than 16x 16. As a result, we choose the size of the sliding

window to be 16x 16. Notice, however, as long as the window is not too large or too small,

the size is not very critical and the same size can be used for a number of images.

Secondly, even by proper selection of the window size, we still might come to a situa-

tion in which a window contains data from different classes in about equal amounts, i.e.,

the window is"sitting" on a boundary. The sample vectors arising from such situations will

affect the accuracy of the estimated class model vectors. As a result, the performance of

4.2.7



the sci;:entat io:' :i ,e ,i"'grdel. For example, regions that should be well separated if
'he cla. vlod! vc 'or", irc r,,asiiQ4Sail accurate may be mixed together, or not separated at

all. liowucer. wc o,.cvvd tlhii when a sliding window contains data from different classes,

Ihe (stiirat , variice is usuallv qiite large, especially when the difference in gray level

is large. Htllcc. to itunrove the estimation accuracy, we can reject those sample vectors

w.vhich hzre iarte ,.:an.v ' omponents. For the simple scheme considered here, a threshold,

denoted T,,, is stlec, d :3rud if the square root of the variance component of a sample vector

exceeds the thresholc. 7,, it xkill be discarded from the clutering procedure. Currently.

this threshold is seected heuristically through observing the quality of corresponding seg-

mentatucM results. Ler in this section, we will show, through experimental results, this

simple scheme does inmprove the segmentation. For a completely automatic process, it has

to be selected according to a fixed rule or algorithm. Other more sophisticated techniques

can also be used to obtain reliable model parameter estimates. For example, a X2 type

of test can be performed on the data contained in a number of subwindows of a sliding

window to see if they have the same distribution; that is, if the gray level in the sliding

window is "uniform". If the data is uniform, an estimated sample model vector is stored.

Otherwise. it is rejected. In this approach, we still need to decide the size of the sliding

window, the number of subwindows, and the significance level of the test. Another ap-

proach is to use robust estimation techniques treating unreliable sample model vectors as

"outliers"'. These approaches are currently under investigation r12].

We have applied the algorithm described in the previous sections to the segmentation

of aerial photographs. The images are of size 256X256 and digitized to 256 gray-levels.

The segmentation is performed for each image under different assumptions on the number

of classes. In the following we will present and discuss the experimental results.

First, we show that by rejecting sample model vectors with large estimated variance

component, using the simple scheme described previously, the segmentation results can

indeed be improved In Fig. 4.2-4, an image containing fields and oil tanks is segmented

tinder the assumption of 3 classes. The size of the decision window is 3 x 3; that is, M-- 1.

The segmentation results, along with the estimated model parameter vectors, are shown

in Fig.4.2-4b and 4.2-4c, respectively, for the case of not rejecting any sample vector and
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rejecting sample vectors with large variance component. In the latter case we have taken

T,=:15. It can be seen that the results are improved considerably. In the rest of the

experimental results, we reject the sample vectors which have large variance component

using T, = 15.

Next, in Fig. 4.2-5, we show the effect of the window size M in the ML segmentation

approach. It can be seen that when the decision window size is selected properly, the

windowed approach smoothes out some noisy spots in the segmentation and significantly

improves the segmentation results. In the rest of the segmentation experiments, we used

decision windows with size 3 x 3, or M = 1.

Finally, in Fig.'s 4.2-6, 4.2-7, 4.2-8 we show some segmentation results for three differ-

ent aerial photographs under the assumptions of both 3 and 6 classes. In each case, different

regions of the image are separated reasonably well by a 3-class assumption. Buildings, roof,

roads, and vegetation areas, are well separated. Finer segmentation is obtained under a

6-class assumption. It should be pointed out, however, that the segmentations here are

still coarse in that different real world objects are assigned to the same class as long as

they are close in tonal properties. Differentiation of regions of the same class which are

really different objects could be achieved using other properties, for example, texture or

shape information.

4.2.4 Summary:

In this paper, we have described an unsupervised Gaussian model-based ML approach

to image segmentation. In this approach, different regions are modeled by independent

and spatially varying Gaussian random fields. The segmentation problem is formulated as

a statistical decision problem and an ML solution is proposed. The model parameters are

estimated directly using a clustering-estimation method. Experiments on the segmentation

of aerial photograph images are shown to be promising.

This work brings up a number of problems for future invc3tigation. First, we need

to study methods to determine the threshold, T,, for rejecting erroneous sample model

vectors directly from the data. Possible solutions are outlined ini the previous section

and experiments are needed to thoroughly investigate their efficacy. Another interesting

problem is the characLerization of the image classes. The independent Gaussian model
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cm ro%'"d in this w;'cr basically aimed at the tonal properties of the image classes, while

spatia' variation or ' exture is only reflected in the variance of the model. In addition,

I: inde'n,'.ence assurrption further limits the characterization of texture properties in

irvma o~, ( O O .h Gther hand, a number of texture-based segmentation schemes do not

perform well N,,hen the image classes exhibit strong tonal differences [121. What is needed

imr' rtu approach that combines the merits of both tonal model-based and texture

rrif l -},.ici-~ tl ap!-roaches.
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Fig. 4.2-1 An Image Containing Multiple Regions

R5  * *

An Initial Segmentation of an Image.
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Fig. 4.2-2 A Realization of a 3-Class Gaussian Random Field

9'z

a.) MRF Generated Region Map. b.) 3-Class Image;
a, =(70,8.9),

a2 = (100, 14.1 ),

_3=(150, 10.9).

4.2.14



Fig. 4.2-3 A Sliding Window on the Image Plane
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Fig. 4.2-4 Performance Improvement by rejecting large variance components

a.) Original Image

b.) Segmentation 1, 3-classes, c.) Segmentation 2, 3-classes,
without rejecting model vectors rejecting model vectors with
with large variance term; M=1, large variance term; To,=15,M=1,
'a,=(150, 57), ai=(158.1, 11.5),
a2 (203.4, 7.5),a2=(0.,4)

4.2.167,34)
63 (135.2, 9.0) a32.6=a(131.0, 5.0)



Fig. 4.2-5 Improvement by decision window of size greater than one, T, = 15

a.) Original Image

V4V.

b.) Decision Window lx1 c.) Decision Window 3x3

(M=0) (M=1)
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Fig. 4.2-6 Segmentation of Aerial Photo 1, T, 15, M

a.) Original Image

9, i

b.) 3-Class Segmentation c.) 6-Class Segmentation
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Fig. 4.2-7 Segmentation of Aerial Photo 2, T, 15, M I

u-k- - I 0"

-7r

a.) Original Image

b.) 3-Class Segmentation c.) 6-Class Segmentation

4.2.19



Fig. 4.2-8 Segmentation of Aerial Photo 3, T, 15, M 1

• Z .. -
!  .. . . . ..-; ' . .. .. -.k: .

4 "

a.) Original Image

b.) 3-Class Segmentation c.) 6-Class Segmentation
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4.3 Texture Classification and Discrimination Using the Markov Random Field Model:

Over the last ten year3, texture analysis has become a very important area in image

processing applications and many techniques have been proposed and investigated. These

techniques can be classified as either statistical or structural. In a statistical approach.

texture is characterized in terms of its statistical properties such as mean, variance, or

probability distribution. In a structural approach [1-3], texture is described as a formal

language which contains specified primitives as elements and uses a placement rule as its

grammar. In this paper, we will be only interested in a purely statistical approach.

Most of the existing statistical techniques, as summarized by Haralick in T, are ad

hoc in that no stochastic modeling assumptions are made for the texture classes. Textures

are described in terms of some lower-level features such as mean, variance and correla-

tion functions. Although these features provide some useful information about the texture

classes, they are quite limited. As a result, while considerable success has been achieved

for some special applications, there is little known in general as to how good these tech-

niques are and what type of texture classes they can be applied to. In response to this

shortcoming, Modestino, et al. [4-51 introduced a particular random field model, called the

random tessellation process, for texture. Under this modeling assumption, texture anal-

ysis applications, such as classification and discrimination, can be formulated as classical

statistical decision problems. More generally applicable and optimal solutions can then be

obtained. However, as pointed out in [4-51, there are some unsatisfactory features of their

model.

The recent developments in Markov random field (MRF) theory provide a powerful

alternative texture model and have resulted in intensive research activity in MRF model-

based texture analysis techniques 16-9]. Comparing to the previously proposed techniques,

the MRF model-based approach has several distinguishing features.

First of all, the MRF, also known as the Gibbs Random Field (GRF). is characterized

by the joint probability distribution function of the random variables on the entire lattice

over which the MRF is defined. This provides complete information about the statistical

properties of the random field. Secondly, the joint probability of the random field can be

specified in terms of a few parameters, which makes the model mathematically tractable.
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Finally, synthetic textures that closely resemble real-world textures can be generated by

properly selecting a specific MRF model. In this paper, we describe a novel MRF model-

based maximum-likelihood (ML) approach to texture classification and discrimination.

In a texture classification problem, an observed image is to be assigned to one of a

finite number of classes according to its texture. Abend, et al. [10 proposed a Markov

mesh model-based approach for texture classification. As an extension of the Markov

chain to two dimensions, it has a causal structure and recently has been shown [ill] to be

a subclass of the 1..RF which is non-causal in general. Chellappa, et al. [121 have shown

some success on texture classification using a non-causal Gaussian Markov Random Field

model which is again a specific MRF model f111. A similar approach is proposed in [13]. In

this paper, we will consider the general MRF model which is noncausal and non-Gaussian.

As can be seen later, this class of MRF models is more convenient for the classification of

textures with few gray levels, as with binary textures, for example.

In a texture discrimination problem, an observed image is to be separated into disjoint

regions of different textures, hence is also known as texture image segmentation. Derin,

et al. 8 [81 proposed a maximum a posteriori (MAP) estimation approach for texture dis-

crimination using the MRF model. More specifically, they have considered a hierarchical

image model. First, the distribution of the texture regions on the image lattice is modeled

as a MRF. Then, different texture types are modeled by different MRF models. The max-

imization in this MAP approach is performed through dynamic programming with some

approximations made on the a posteriori probability functional. The model parameters

for different textures are assumed to be estimated from training data while the model

parameters for the distribution of regions are chosen heuristically. In other words, this is

a supervised approach. A similar supervised MAP approach is developed in [13] under a

Gaussian Markov modeling assumption.

In this paper, we use a novel unsupervised NIL approach. First of all, we do not assume

a model for the distribution of regions since, even in those cases for which training data

for different textures are available, the training data for the region distribution is rarely

available. It is for this reason, in particular, that we have avoided a MAP approach and

made use of a simpler ML approach which requires less a priori knowledge. Secondly, we
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have considered the case when the training data for each texture type is not available.

A clustering technique is used to estimate the MRF model parameters directly from the

observed image, resulting in an unsupervised scheme. Finally, texture discrimination is

accomplished by assigning each pixel of the image into different texture classes through an

ML test per-formed on the basis of neighboring pixels. This results in a highly parallel al-

gorithm. As will be shown, compared to a dynamic programring approach, this algorithm

requires far less computation.

After a brief review of the MRF theory in the next section, the ML approach for

texture classification and discrimination with corresponding experimental results will be

presented in Section 4.3.2 and Section 4.3.3, respectively. A summary is provided in Section

4.3.4.

4.3.1 The Markov Random Field Model:

The MRF model used in this paper originated from studies in statistical physics and

recently has been adapted to an image processing context. In this section, we review some

basic theory and some specific MRF models that will be used later.

For simplicity, we consider only digital images. That is, images with finite size and a

finite number of grey levels. In particular, we define an image to be a two-dimensional (2-

D) array over a finite square lattice, denoted by f {f(i,j),(,)CL} where L = { (,j), 1 <

< K N,I < J < N}, and f(i,j) can assume only a finite number of values.

A random field is defined to be a family of random variables defined over the 2-

D lattice L. Denote the random field by X, the random 'ariable at (i,j) by X(i,j), then

X = {X(i,j*), (i,j)L}. In statistical image modeling, images are considered as realizations

of 1andom fields. In this paper, capital letters are used for random fields or random

variables while lowercase letters are used for realizations or sample values.

A MRF on a 2-D lattice is a random field with the special property that the statistics

of a point in the lattice given those of the rest Gf the lattice depends only on a few points

known as its neighbors. More rigorous definitions are presented in what follows, s, .ting

with the concept of a neighborhood system.

Definition 1: A collectio,: of subsets of L, n {,(i,j),(i,3)EL,n(i,3) C L} is a neighbor-

hood system on L, if and only if
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(i (,jl " fLi,J).

Some typcal neighborhood svstem configuraticns are shown in Fig. 4.3-1. As in-

dicated c.here, a neLgl.orhoo d sys-.trn can be clas.ified as first-order, second-order, etc.,

according ro "he number of neighbors each iattice noint has. To avoid boundary prob-

lems, a periodic 'attice structure is assumed. Under this condition, all the points in L will

have the same number of neighbors. A MRF is then defined with respect to a specified

neighborhood system.

Definition. 2: Let n be a neighborhood system over- the 2- - lattice L. A random field
X {(X(i,j),(:)eL.} is a M.F with respect to ii, if and only if

.) x: 0, for all x (la)

(ai) P (, x) -(i. j)X(k, f) z(k, f), (k, t)L, (k, ) (i,j)]

= [X(t) x(i,J) !X(k, f) = x(k, f), (k, £)n(i,J)1 (lb)

where Pr-i and PH<k; indicate the joint and conditional probability distributions of the

random field, respectively. The order of the neighborhood system n is called the order of

the MRF and the conditional probabilities in (1b) are also called the local characteristics.

The concept of the MRF would not be very useful for practical applications if it were

not for the Hammersley and Clifford theorem which establishes the relation between the

MRF and the Gibbs Random Field (GRF) and hence provides the functional form of the

joint probability distribution function for a MRF. Before the GRF can be defined, the

important concept of a clique must be introduced.

Definition 3: Given a lattice and neighborhood system pair, (L, n), a clique on the lattice,

denoted by c, is a subset of L, such that

(i) c contains at least a single point of L

(ii) if (k, e)(c, (i, j)c and (i,.J) # (k, f), then (i,J)cn(k e).

In particular, the colletion of all the cliques of the pair (L, n) is denoted by C(L, n).

Examples of clique types under different neighborhood systems are sho -i in Fig. 4.3-2.

Now, the GRF can be defined as follows:

4.3.1



Definition 4: A random field X = {X(i,j), (i,j)3EL} is a GRF with respect to a given

neighborhood system n, if and only if its joint probability distribution function is of the

following form:

P[X = x] = Z-'exp[-U(x)j, (2a)

where

U(x) V (2b)
crC(L,n)

and

Z ep[-U(x)1. (2c)
allx

Here, Vr(x) is called the clique function and it depends only on the points in clique c while

Z, called the partition function, is a normalizing factor to make (2a) a valid probability

distribution. Notice that the GRF is defined in terms of its joint probability distribution,

which provides complete information about the random field, while in the case of a MRF,

there is little known about the joint probability distribution. Similarly, the conditional

probabilities or local characteristics of a GRF can be found from the joint probability

distribution, while in the case of the MRF the conditional probabilities are not readily

apparent. Hammersley and Clifford have established the equivalence between the MRF

and GRF, hence making the MRF a feasible model for practical applications such as texture

modeling. This theorem will be simply stated in what follows. The proof is rather involved

and can be found in Besag's work [141.

Theorem: A random field X = X(i,j), (i,j)AEL} defined over L is a MRF with respect to

the given neighborhood system n if and only if it is a GRF with respect to n.

In this paper, two MRF models will be used as texture models, presented in the

following examples in terms of their conditional probability distributions. These models

have been widely used for real-world two-dimensional (2-D) phenomena, including textures,

and have been shown to be simple and effective [6-10]. They are the main MRF texture
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models used in this paper. However, other models can also be defined for applications of

interest by properly selecting the clique functions [14].

A.) Example of a First-Order MRF:

Consider a first-order MRF with the neighborhood system and its clique types shown

in Fig.'s 4.3-1a and 4.3-2a. The joint probability distribution function of this MRF is:

PX=x]= Z-exp[a E x(i,j)
(i,j)(L

+-b1 >3 x(i,j)x(i,j- 1)

(ij)(L

-t-b 2  x x(i,j)x(i -1,)]. (3)
(i.j ) -L

Notice that in the above summations the periodic lattice structure is assumed. The

local characteristics of the MRF can be found easily by Bayes' conditional probability

formula as:

P[X(i,j) = x(i,j) X(ke) = x(kJ),(kJ)En(i,j)]

exp[x(i,Jj)s(i, j) ()
=Zli.j) exp[x(i,j)s(i,j)' (4)

where

s(i,j) = a + b[x(i,j - 1) + x(i,j + 1)]

+ b2 [x(i - 1,j) + x(i + 1,j)] (5)

and the sum is over all possible values of x(i,j). A special case is when b, = b2 = b.

This is called an isotropic MRF.

B.) Example of a Second-Order MRF:

This MRF model has the second-order neighborhood system and clique types shown

in Fig.'s 4.3-1b and 4.3-2b with the following joint probability distribution function
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P(X xl Z-'exp[a >: x(i',J)
(ij"( L

± i L X j)x(*,
(i.j)cL

+ b2 Ej z(i, j)x(i- 1,j)
(i, flcL

+ Ci E x(i,j)X(i - ,j - 1)
(i,j)cL

+ c2 E X(i,j)X(i - 1,]+ 1)]. (6)
(ij) L

Again, the periodic assumption is made for the above summations. Similar to the

previous example, the local characteristics can be found as:

P[X(i,i) =x(i,j)jX(k,t) = x(k,t),C(k,)cn(1,j)]

exp[x(i, j)t(i, i)l

where now

t(i,j) a + bi[x(i,j - 1) + x(i,j + 1)]

+ b2 [z(i - 1,j) + x(i + 1,j)l

+ cI[x(i - 1,j - 1) + x(i + 1,j + 1)]

+ c2 [x(i - 1,j + 1) + x(i + 1,j - 1)1. (8)

Suppose a given image f = {f(i,j), (i,j)EL} is modeled by a specific MRF. It is

desired to estimate the model parameters of the MRF from the image data. Since the

ML approach to be developed later bears close relationship with the parameter estimation

algorithm, we will describe it in detail.

Let the parameters be denoted by the vector a. For example, for the first-order

isotropic MRF, a = (a,b). The maximum-likelihood (ML) estimate of a, denoted aML,
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A

is ootained by maximizing the likelihood functional L(f;a) - P(f a) where P(f1a) is the

joint probability of f as a realizat;on of the MRF given a as the parameter vector. Once

the inodel is chosen, P(f'a) is a functional of the vector a. Although this estimate is

optimum, it is difficult to compute. This is because the computation of the conditional

joint probability functional, P(f a), involves the computation of the normalization factor

Z in (2), which in turn contains all the possible realizations of the MRF, and in this case

is also a functional of a. The computation is almost impossible even for a binary MRF

(BMRF) on a reasonably small lattice. Obviously, a suboptimum technique needs to be

used which preserves some optimality of the (ML) approach and yet is computationally

feasible. Besag's coding method [14, is such a technique.

In this coding method, the 2-D lattice 's separated into disjoint sets of points, called

codings, according to the neighborhood system assumption of the MRF. The codings are

defined in such a way that the points in each coding are conditionally independent given

the random variables on the other codings. From this property, no two points in the

same coding are neighbors. Examples of codings are shown in Fig. 4.3-3 for the first and

second-order MRF's discussed in this section.

Suppose for a given MRF there are M codings, denoted by C 1, C2 , ..., Ckf. Define for

the m'th coding the following coding-likelihood:

L, (f ;a) = P [F (i,J) = f (i,j), (i, j)cC, Ia, F (k,. f f(k, t), (k, t) 1EC,

for allq, 1 <q< M,q-4m]; m= 1,2,...,M. (9)

Since the points in a fixed coding are conditionally independent, L,(f; a) can also be

written as

L,(f; a) fJ PIF(i,j) = f(i,j)! a, F(k, )= f(k, t), (k, t)(n(i,j), (10)

where PLI'.i is the local characteristic which can be easily computed. Therefore, L,,(f;a)

is also easy to compute. The m'th coding estimate of the parameter vector can be obtained

by maximizing L,,,(f;a) with respect to a for m = 1,2,...,M. The resulting estimate will
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be denoted by iMCL' m 1 ,2,...,M, where MCL indicates maximum coding likelihood

estimation and the superscript indicates the m'th coding. It has been noticed by Besag

1141, Cross and Jain [71, and the present authors that this coding method provides very

accurate estimates. Also, the estimates obtained by using different codings are very close

to each other. In the remainder of this paper, for definiteness, we compute the maximum
coding-likelihood estimate as the average over all i()

MCL' That is, we take
AMCL ME MCL"

M=1

4.3.2 Texture Classification:

In this section, we will first develop the MRF model-based ML approach for texture

classification for the case where training data is available and then show that it can be

combined with a clustering algorithm when training data is not available. A block diagram

outlining an approach to the texture classification problem is shown in Fig. 4.3-4. The

inputs to the classifier are digital images containing texture data from one of a finite

number of texture classes. These images are separated into the unknown or test set of

images, whose texture class is unknown, and the training set of images, whose texture class

is known a priori. The training set is necessary to provide information that will be used

by the classifier in the decision process. In the parameter estimation stage, information

essential for differentiating the texture classes is estimated from the training set of images

and used to adapt the classifier for all the possible texture classes. Then the unknown

images will be processed by the classifier to decide which texture class is presented.

Let the image data on which the classifier is to operate be denoted by f =

{f(i,j),(i,j)EL}. Assume that there are K texture classes or hypotheses labeled by

Hk,k = 0, 1,2,..., K - 1. The class-conditional likelihood functional [15], assuming the

k'th hypothesis is acting, is then defined as:

Lk(f) -P(fIHk); k =0,1,.K-1, (12)

where P(flHk) is the joint probability distribution of the random field assuming that

hypothesis Hk is acting.
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If the MRF described in Section 4.3-2 is used as the texture model, the likelihood

functional in (12) is the joint probability of the MRF model for th? k'th texture class. In this

paper, we assume different texture classes are modeled by MRF's with the same functional

forms of prolbability distribution but different in the parameters in these functionals. For

example, if the first-order isotropic model is used, the likelihood functional is

Lk(f) =P[f!ak] = P[fJ(ak,b,)]; k =0,1,...,K - 1, (13)

where ak = (ak, bk) is the parameter vector for class k. According to the ML decision rule,

which minimizes the classification error probability, the data is assigned to texture class

k0 corresponding to the index that maximizes the class-conditional likelihood functional

in (12).

Although this approach is optimum, it is usually difficult to implement, since the com-

putation of the normalization factor Z in P[f Hk], just as the case of parameter estimation,

involves all the possible realizations of the MRF. A reasonable suboptimum approach is

to use a likelihood functional which is closely related to the joint probability function

and is yet easy to compute. The coding likelihood used in Besag's coding method for

model parameter estimation can be used t, develop such a suboptimum approach. In-

stead of computing the joint probability, the coding likelihood, defined as follows, is used

as the likelihood functional. More specifically, suppose there are M codings denoted by

C 1 , C2 , ..., CM, the class-conditional likelihood evaluated on the m'th coding is

Lm,k(f) P[f(i,j), (i,j)EC,,ak, f(k, t), (k, t) Cm]

[ Pff(ij)Jak, f(k,), (kt) n(iJ)];

m=1, 2, _., M; k = 0, 1, ... , K - 1. (14)

As mentioned previously, the coding likelihoods computed for different codings are

very close. In principle, we could choose any value of m = 1,2,...,M and perform ML

classification on the basis of L,,,.k(f), k = 0, 1,..., K - 1. However, for definiteness, we have

chosen again to average the various coding likelihoods. More specifically, define
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M

Lk(f) L..k(f). (15)
k=1

The decision rule then becomes: assign the data to class ko if

Lk,(f) = max_ Lk(f). (16)
L<k<K-

When training data is available, this suboptimum ML classifier can be implemented

with the estimated parameter vectors for each texture class from the training data set

using Besag's coding method. When the training data is not available, as is often the case

in many practical applications, the parameter vector for each texture class can be obtained

as follows. First, model parameter vectors are estimated from every observed image. Then

these vectors, also called samples, are grouped into several disjoint sets called clusters.

Finally the centroids of the clusters are used as the estimated class model vectors in the

ML classifier. This is usually referred to as a clustering procedure in pattern recognition

and the algorithm which performs the grouping is called a clustering algorithm. There are

many clustering algorithms available [161, [17]. In this paper we make use of the K-means

algorithm [17]. It has been shown that this algorithm is optimal under a specific cluster

criterion function and convergent under a well defined condition for the distribution of

samples. It is also simple to implement. The major disadvantage of this algorithm is that

the number of clusters has to be known before applying the algorithm, which is sometimes

an impractical assumption. A number of techniques, mostly heuristic, have been proposed

to determine the number of clusters, or classes, and there is no well accepted theory [16],

r181. In this paper we assume that the number of classes is known or predetermined and

pursue this problem in other separate work.

Texture classification experiments have been performed on both synthetic texture

classes and natural texture classes to test the efficacy of the ML approach described above.

The synthetic textures used are realizations of binary Markov random fields (BMRF's)

while the natural textures are equal probability quantized binary images from Brodatz's

photo album [19]. For each case, the classification is performed with the aid of training

data or using the clustering method. The experimental results are presented as follows:
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A.) Supervised Classification of Synthetic Textures:

The texture classes used in this experiment are generated as follows: First, a re-

alization of a binary MRF of size 240 x 24 specified by a parameter vector ak,k =

0, 1. K 1, is generated using Geman and Geman's algorithm [9]. Next, each 240 x 240

image is cut into nine 80 x 80 subimages. Finally, the subimage at the upper-left corner is

used ab the training data for that texture class, while the rest of the subimages are taken

as test data.

The first-order isotropic BMRF is used in both texture generation and parameter

estimation. Four texture classes are generated. The estimated model parameters from the

training data for each texture class are shown in Table 4.3-1a along with the actual model

parameters used to generate the texture classes. The 240 x 240 image for each texture

class is shown in Fig. 4.3-5. It can be seen from these images that they have different

clusterings. The classification results are shown in the contingency table in Table 4.3-2a.

All the data are correctly classified. Similar results have been obtained for second-order

MRF's 119'.

B.) Unsupervised Classification of Synthetic Textures

In this experiment all the subimages in A.) are used as test data. The clustering

algorithm described previously is applied on the set of model vectors estimated from the

thirty-six subimages, using the same BMRF model as A.) and assuming the number of

classes is known to be four. The cluster centroids as shown in Table 4.3-1b along with

the model parameters that generates the synthetic textures and the classification result is

shown in Table 4.3-2b. The estimated model vectors obtained by clustering are very close

to the actual values and all data are correctly assigned.

C.) Supervised Classification for Natural Textures

The natural textures used in this experiment are four texture images from Brodatz'

photo album '201. They were originally 256 grey level images of size 128 x 128. An

equal probability quantization is performed to transform these textures into binary images.

Figure 4.3-6 shows the binary quantized images of these texture classes. The training ddta

and test data sets are obtained as follows: First, each image is cut into four 64 x 64

subimages. Then the subimage at the upper-left corner is used as training data while the
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rest are used as test data for that texture class. Usually, natural textures are modeled by

MRF models of order higher than one [7]. However, we found that when fitted with the

second-order MRF model, parameter cl and c2 for these images are quite small comparing

to the other ones in (8), hence all the binary texture classes are modeled as first-order

BMRF's. The class parameter vector for each class is estimated from training data and

shown in Table 4.3-3a with corresponding classification results in Table 4-3.4a. All the

subimages have been correctly classified.

D.) Unsupervised Classification for Natural Texture

The results for this part is obtained in the same way as in C.) except the class model

vectors are obtained through clustering, assuming the number of classes is known to be

four. The centroids of the clusters and classification results are shown it, Table 4.3-3b and

4.3-4b. All the data are correctly classified.

4.3.3 Texture Discrimination:

Unlike texture classification, which assigns an entire image to a specific class, the

interest now is to discriminate between different texture classes within the image. The ML

approach of [41 is adapted, under a MRF modeling assumption, to develop a new likelihood

functional using the information provided by the MRF model. Discrimination experiments

have been performed on test images containing synthetic textures and natural textures.

Assume that textured image, f ={f(,j), (i,j)cL}, is a realization of a random

field denoted by F ={F(Kj),(i,j)L} and the lattice can be decomposed into regions

R, .... RQ of K different textures as shown in Fig. 4.3-7. That is

Lrzj= R,. (17)

where K < Q.

We will model the texture classes within each region as a MRF defined o'er that

region. Regions belonging to the same texture class will have the same MRF model vector.

Suppose each pixel (i,j) of the image belongs to one of K texture classes denoted by the

hypothesis Hk, k = 0, 1,...,K - 1. Texture discrimination is the process in which each

pixel is assigned to a particular class. Suppose a window of size (2M - 1) x (2M + 1) is

constructed for each pixel position (i,J) and the pixels within this window are denoted
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by i.j {f(k,t),(k, )EW1j,j}, where 1i,j {(k,t),i- M < k < i + M,j - M < i <

j + M}, with M is much less than N and the periodic condition is imposed. The likelihood

functional in this case, given that the k'th hypothesis is acting, is defined as

Lk{.i.j} = P{.7,jHk}; k=0,1,...,K-1. (18)

Pixel (1,J) will be assigned to texture class k0 , if

Lk 0 {JJ} max Lk{4,j}. (19)
O<k<K-I

After this procedure is performed for all the pixels, the image will be segmented into

disjoint regions which belong to different texture classes in such a way as to minimize the

classification error [41.

Although this method is theoretically optimal, the joint probability of the pixels in

the window is hard to evaluate and complicates the evaluation of Lk{.}. For example,

assuming the texture in each regions Rq is modeled as a MRF, the likelihood functional

in (17) can be written as

Lk{Z.,} = Z > P[f(k, t), (k, t)ERi,jIHk]; k =0, 1, ..., K - 1, (20)
(k, t) W., f (k, fl

where PH'IHk] is the class-conditional joint probability distribution of the MRF and Ri,j is

one of the R,s in (17). The difficulty of evaluating (20) is that region Ri,j is unknown before

the discrimination process. Again, as in the case of texture classification, a suboptimal

approach is desired which preserves some optimality of the previous likelihood functional

and yet is easy to compute. The ML approach developed in this section is such an approach

which uses the coding structure. In this approach, the likelihood is the coding-likelihood

evaluated only within the decision window centered at the pixel to be classified. More

specifically, we chose a coding which contains the center point in the window, denoted

by Cij. Now, the ML approach can be described as follows: Define the class-conditional

coding-likelihood as
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Lc,.k{ (7j} = Pjf (k, 1), (k, f) ECjj i-i.j! f(m, n), (m, n) ERjj, (m, n) Ci.j, Hk

= 1 P[f(ke) f(mn), (mn)cn(ke), Hk];

(k. e % ,l W,

k = O,,...,K -1. (21)

This likelihood can be easily computed from the local characteristics and the discrim-

inator will assign a pixel (i,j) to texture class ko if

L~kM{ax} _ - (22)' ' O<k<K -I "

Due to its simplicity, the algorithm above is quite efficient. For an N x N image with

K texture class types it requires approximately N2 K computations to process the image.

Note that the previously described MAP algorithm of Derin, et al. requires about N 2 KD

computations using dynamic programming where D is an integer and D > 2. In addition,

the ML algorithm proposed here can be implemented through parallel computation since

the assignment of a pixel in the image does not depend on that of others.

When training data for different types of textures are available, the MRF model class

vectors can be estimated from them, resulting in supervised texture discrimination. When

the training data is not available, a clustering scheme, similar to the one described in the

last section for unsupervised texture classification can be used. In particular, consider

a sliding window of size Mi x M 2 on the observed image as shown in Fig. 4.3-8 where

we assume M 1 ,M 2 << N. At each position of the window, a MRF parameter vector is

estimated from the data within the window. The parameter vectors obtained are then

used as the sample vectors for the clustering algorithm. We have chosen the K-means

algorithm as the clustering algorithm. Finally the centroids of the clusters are taken as

class model vectors as if they were estimated already from training data. Here, again, we

assume knowledge of the number of clusters. In this clustering approach the choice of size

of the window is quite important. If the size is too large, a single window might contain

data from several different texture classes whereas if the size is too small, a single window

might not contain enough data for reliable estimation. Both result in unreliable sample
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vectors which will effect the accuracy of the results of the clustering algorithm. The size of

the window should be related to the expected size of the texture regions in the image. At

this point, we make the choice heuristically trying different windows and selecting the one

which provides reasonably good segmentations. Notice here, the sliding window described

above is used for unsupervised model parameter estimation before segmentation whereas

the decision window described previously is used during the segmentation.

Texture discrimination experiments have been performed on images containing syn-

thetic and natural textures. Each test image used in these experiments is 128 x 128 and

contains two different textures distributed in the image according to the "region-map"

shown in Fig. 4.3-9. After the ML discrimination, each pixel in the resulting image is

assigned one of two gray levels, depending on which texture class it belongs to. The re-

sults for both supervised and unsupervised discrimination are presented below. While the

results are for binary and two class images, the extension of the method to non-binary and

multi-class problem is straightforward.

A.) Supervised Discrimination of Synthetic Textures:

The two-class test image is shown in Fig. 4.3-10b along with the region map. The

two synthetic textures are generated using the first-order isotropic BMRF's. The model

parameters are estimated from training data which are different realization of the above

BRMF's and are listed in Table 4.3-5a. The results of applying the ML discriminator in

(22) with different decision window sizes are shown in Fig. 4.3-10c and 4.3-10d. As can be

seen, the 3 x 3 window provides very good discrimination. More extensive experimental

results of the same nature can be found in 119], [211.

B.) Unsupervised Discrimination of Synthetic Textures:

The test image used in this experiment is the same as that in A.). The model vectors

for the two different texture classes are obtained from clustering using a nonoverlapping

32 x 32 sliding window.That is, we take N, = Mj,i = 1,2, here and in all experimental

results to follow. The estimated values are shown in Table 4.3-5b and the results of

discrimination using these model vectors is shown in Fig.'s 4.3-I0e and 4.3-10f. It can be

seen the clustering scheme is quite effective in the ideal case when the textures are from

MRF's.
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C.) Supervised Discrimination for Natural Textures:

The test image shown in Fig. 4.3-11b, along with the region map, contains two

binary quantized natural textures from Brodatz' photo album. These binary textures

are modeled here by the first-order BMRF model. The model parameters are estimated

from training data and are shown in Table 4.3-6a. The discrimination results for selected

decision windows are shown in Fig. 4.3-11c and 4.3-11d. Notice now that a larger decision

window is needed to obtain results comparible to those of A.). This might be caused by

the model mismatch. However, the discrimination results are still quite good.

D.) Unsupervised Discriminationj for Natural Textures:

The experiment in C.) is repeated with the model parameter vectors obtained from

clustering with a nonoverlapping 16 x 16 sliding window. The resulted cluster centroids

(model vectors) are shown in Table 4.3-6b and the texture discrimination results with

different decision window size are shown in Fig. 4.3-1ie, and F. Again, the clustering

approach worked well.

1.3.4 Summary

In this paper, we have developed a MRF model-based ML approach to texture classi-

fication and discrimination problems. Under the MRF texture modeling assumption, they

were formulated as statistical decision problems. To make computa ion feasible. t.he likeli-

hood functional originally derived based on the joint probability distribution of the MRF

model is approximated using Besag's coding method. Most of the statistical model-based

approaches proposed previously are supervised. That is, they require a training data set

for model parameter estimation. Unlike these approaches, we also consider unsupervised

schemes which do not require the training data. For the latter, a novel clustering technique

is proposed to estimate the model parameters directly from the cbserved image. Exper-

imental results on texture classification and discrimination using these two schemes are

shown to be quite promising.

However, there are limitations to the MRF model-based approach. For example, in

the unsupervised clustering scherne we assume the number of different texture classes is

known which is generally not the case. Although a number of methods exist which can be

used to determine the number of classes, they are mostly ad hoc and there is little known
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as to how well they work in general. In some cases, a reasonable assumption might be

made about the number of classes based on a priori knowledge of the situation. However,

to make the unsupervised scheme work in general, it is desired to develop more reliable

methods to estimate this number. One such approach is described in [21].
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Table 4.3-1

Pa arametes -- ra-* F--
a b a b

Texture Class Actual a Estimated Actual I Estimated Texture Class Actual Estimated I Actual Estimated
F--3 ---

CIass -2.0 -2.18 1.0 .07 Class 1 -. 0 1 -2 G.2 C.21

Class 2 -6.0 -5.55 3.0 2. Class 2 -6.0 -. 15
Class 3 2.0 2.01 -1.0 -1.,3 Class 3 2.0 .96 ,- - .1-

5.1 -303?9 Class 4 .9'6u

Class 4 Clas -3. 4 .Pr

a.) Estimated from training data b. ) Estimated by clustering

Estimated Model Parameters for the First-Order BMRF.

45s~red Class AssQrpd Class

3 4 True Class 1 _ 2 4

. 2 0 0

' 9 2 3 0 q . 0

42 C 0 9 r' 0 0 9

No. of Subimages=36 N. o. of Subimagpes=36
.,o. of correct Assignments=36 ;o. of correct Assic rnents=36

of correct classification=lO0 of correct clssification=100,

a.) Supervised Classification b.) Unsupervispd Classification

Table 4.3-2

Classification Results for the First-Order BMRF.
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Table 4.3-3

Estimated Model Parameters Estimated Model Parameters

Parameters Grass Wood Bark Sand Parameters Grass Wood Bark Sand
a -1.94 -4.56 -2.95 -2.26 a -1.80 -3.92 -2.77 -2.35

bI  0.75 0.36 1.21 1.23 bl 0.67 0.32 1.09 1.23

b2  1.14 4.07 1./1 1.17 b2  1.11 3.62 1.71 1.12

a.) Estimated from training data b.) Estimated by clustering

Estimated Parameters for Natural Texture
Samples Modeled as First-Order BMRF's.

Assigned Class Assigned Class

True Class Grass Wood Bark Sand True Class Grass Wood Bark Sand

Grass 4 0 0 0 Grass 4 0 0 0

Wood 0 4 0 0 Wood 0 4 0 0

Bark 0 0 4 0 Bark 0 0 4 0

Sand 0 0 0 4 Sand 0 0 0 4

a.) Supervised Classification b.) Unsupervised Classification

Table 4.3-4

Classification Results for the Natural Texture Samples.
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Table 4.3-5

Est. Parameter Est. Parameter

Texture Class a b Texture Class a r b

Class 1 -5.55 2.74 Class 1 -4.67 2.32

Class 2 5.72 -2.90 Class 2 3.56 (-1.87

a.) Estimated from training data b.) Estimated by clustering

Estimated Parameters from the first-order BMRF
For Synthetic Texture Discrimination.

Table 4.3-6

Estimated Parameters Estimated Parameters

Texture a b I b2  Texture a bI  b2

brass -1.94 .75 1.14 Grass -1.82 .53 1.31

Ripple -3.03 .343 2.53 Ripple -2.88 -.15 3.05

a.) Estimated from training data b.) ,t,'mated by clustering

Estimated First-order MRF Model Para ,,=.ters
for the Discrimination of Natural Textured Image.

4.3.23



Figure 4.3-1

(i-I, j) (i-,j -L) (L-1 .1) (L-I .j-1)

(, J-I) Ci, j-) (i, j-L) (j, j-1)

a.) First-Order b.) Second-Order

I Ci.Z,j)

"t i-- . j(t j-1

L*:. 1

c.) Third-Order

Examples of Neighborhood Systems for MRF's.
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Figure 4.3-2

1 - 0 1
a.) Cliques for the First-Order Neighbor Set

10i10) 1(i,H-), 0101) 10i-1,0),01j) 1(0),il ~) , ~ ,0(+1, j+'))

b.) Cliques for the Second-Order Neighbor Set

Examples of Cliques for First-Order and
Second-Order Neighborhood Systems
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Figure 4.3-3

2 3 3

2 3

1 3 3
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a.) Codings for the First-Order b.) Codings for the Second-Order
Neighbor Set Neighbor Set

Examples of Different Codings.
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Figure 4.3-4

training parameter
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unknown classifier decisions
data

A Texture Classification System
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Figure 4.3-5

Synthe t i \tures Modeled as First-('rder BMRF'-,

r4

j'A'~ ~ jJ

LaL

a.) Texture Class 1 b.) Texture Class 2

.X V.'~ A .

i.- i' 1 .4 '..t :7,'

fr*4~4g 
W.,., 4

Ak i , A2 N'~

c.) Texture Class 3 d.) Texture Class 4
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Figure 4.3-6

Binary Quantized Samples of Natural Textures.

a.) Grass b.) Wood

c.) Bark d.) Sand
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Figure 4.3-7
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R3

An Image Containing Multiple Texture Regions
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Figure 4.3-8

N2

A Sliding Window on the Image Plane.
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Figure 4.3-9
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tigu re 4I.3-10

1M war

a.) Region Map b.) Two-Texture Image

c.) Supervised discrim- d.) Supervised discrim-

ination with a 5X5 ination with a 11<11

decision window decision window

e.) Unsupervised dis- f.) Unsupervised dis-

crimination with a crimination with a

5, 5 decision window 11 11 decision window
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Figure 4.3-11

An L im t2c )I N turci I 'exture I) iscr imin t io .

a.) Region Map b.) Two-Texture Image

c.) Supervised discrim- d.) Supervised discrim-
ination with a 1 X1 inailon with a 3X3
decision window decision window

e.) Unsupervised dis- f.) Unsupervised dis-
crimination with a crimination with a
1/1 decision window 3X3 decision window
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4.4 Cluster Validat ion With Application to Image Segmentation:

Clustering procedures have found wide application in statistical data analysis and

pirocessing. The application of specific interest here is stochastic model-based image seg-

rleritation where a clustering algorithm is used to estimate the model parameters for the

various iniage classes in an observed image. In this, and similar applications, it's generally

the case that the clustering algorithm requires prior knowledge of the number of clusters

or data classes. For many applications, however, the number of clusters is not known a

priori and we would like to determine it directly from the data. This is known as the

cluster validation problem. For stochastic model-based image segmentation, the solution

of this problem directly affects the quality of the segmentation. In this work we propose a

tiodel fitting approach to the cluster validation problem based upon Akaike's Information

Criterion (AIC). The explicit evaluation of the AIC for the image segmentation problem

is achieved through an approximate maximum-likelihood (ML) estimation algorithm. We

demonstrate the efficacy of the proposed approach through experimental results for both

synthetic mixture data, where the number of clusters is known, and to stochastic model-

based image segmentation operating on real-world images, for which the number of clusters

is unknown. This approach is shown to correctly identify the known number of clusters in

the synthetically generaLed data and to result in good subjective segmentations in aerial

photographs.

.1.4.1 Background:

Clustering procedures are widely used in various applications of pattern classificition

and statistical data analysis. In a clustering procedure, the observed data or entities are

grouped together to form a number of clusters in such a way that the entities within a

cluster are more similar to each other than to those in other clusters. The measure of

similarity, usually heuristically defined, is called the cluster criterion.

For the past three decades, many clustering algorithms have been developed by re-

searchers in such diverse fields as biology, statistical data analysis and pattern recognition,

iiing very different cluster criteria 11. In some previous work !21 -'. on stochastic iiio(lel-

based irnage segmentation, chlustering algorithms have been use(d to estiniate the Irodel

pa rarnteer vectors for different image classes directly from the observed image. Since the
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nature of this work is related to statistical pattern recognition, the clustering algorithm

used was selected from those developed within the pattern recognition community. One of

the most successful clustering algorithms in this respect is the K-means algorithm {51,[6].

This algorithm is optimum in the sense that it minimizes the variance within each clus-

ter and has been widely used in unsupervised pattern recognition. However, an important

problem existing with most clustering algorithms, including the K-means algorithm, is that

the number of clusters in the data must be specified a priori before using the clustering

algorithm.

In some situations this number can be derived from prior knowledge about the data,

or sometimes can even be determined from visual inspection of the two- dimensional pro-

jection of the data. However, in many applications, such as our previous work on image

segmentation, it is desired to estimate this number directly from the observed data since

a priori knowledge is generally not available and the data are often vectors of dimension

higher than two such that the projection method is not satisfactory. Furthermore, even

when the data is two dimensional, visual inspection may not be successful if the data

clusters cannot be decided by observation. This problem is of great practical importance

for many clustering algorithms and is known as the cluster validation problem [71. For

stochastic model-based image segmentation, such as the schemes described in [21-[4J, the

solution of this problem directly affects the quality of the resulting segmentation. If the

estimated number of clusters, or data classes, is smaller than the true value, the objects

in the image will not be well separated. Likewise, if this estimated number is too large, a

single object may be separated into a number of smaller regions. Both of these situations

are to be avoided.

Most of the previously proposed solutions to the cluster validation problem can be

classified into two approaches: a heuristic approach and a statistical hypothesis testing

approach. In the heuristic approach, the number of clusters are determined by using

some ad hoc criteria. For example, for the K-means algorithm it has been proposed to

look at the plot of the average of the variances within the clusters under assumptions of

different K, the number of clusters. The value of K corresponding to the point where

the curve begins to saturate can then be taken as the estimated number of classes. Many
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ad hoc variations of the K-means algorithms have been proposed based on similar ideas.

In these algorithms, the number K is increased or decreased according to criteria such

as inltra-clister variance and distance between clusters. While some practical problems

can be solved using the heuristic approach, it does not provide a general solution to the

cluster validation problem and, even when applied to specific problerrs, the criteria have

to be fine-tuned through trial-and-error. This, in part, reflects the difficult, nature of the

problem. More specifically, as pointed out by Everitt 'i[ and Jain [7i, clusters are generally

very difficult to define precisely.

To find generally applicable and mathematically rigorous solutions to cluster vali-

dation, many researchers have tried to formulate the problem as a statistical hypothesis

testing problem 8,19]. For example, hypothesis tests have been proposed to test whether

a given cluster should be divided into two. More general likelihood tests have been at-

tempted with the data modeled in terms of finite mixture distributions [91. However, due

to the structure of the mixture distribution, the parameters, which characterize one hy-

pothesis (for example, the null hypothesis) are at the boundary of the parameter space of

the other hypothesis. This, in turn, violates the regularity conditions (cf. [9 ) which are

required for the validity of the asymptotic distribution theory for the generalized likelihood

ratio (GLR) Lest which exists for many simple hypothesis testing situations where each of

the hypotheses can be described in terms of a single probability distribution. As a result,

no GLR test is available at this point to determine the number of clusters directly from

observation data.

On the other hand, 'be problem we face is not unlike the one faced in developing a

theory to fit an autoregressive (AR) model to real-world data in which the order of the

model has to be decided before the model parameters can be estimated from the data.

Having observed that neither heuristic nor hypothesis testing approaches alone would

provide a satisfactory solution to determining the order of the model, hence the practical

fitting of a model to observation data, Akaike 10' suggested that the problem should

be viewed as a multiple decision problem. That is, rather than asking which hypotlhesis

is acting (which order is correct), we should ask which model b(,st fits the data. The

goodness of fit, as pointed out later by Akaike 1 :, should be a properly defined entropy
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function and the best fit should be obtained by maximizing this quantity. Based on

this maximum-entropy principle, Akaike proposed a criterion, called the AIC (Akaike's

information criterion), to determine both the order and the parameters of an AR model for

observed data. Although there have been some criticisms of the AIC as being inconsistent,

Akaike showed that the AIC is robust and optimal in a minimax sense. That is, it is optimal

when there is no a priori knowledge about the distribution of the model parameters. In

addition, Akaike and others also extended the AIC to several Bayesian variations called

the BIC (Bayesian Information Criterion)[13],[14]. This class of criteria can be shown to

be AIC's averaged with respect to various a priori distributions for the model parameters.

Although the AIC criterion and its variations have achieved substantial success, mostly in

AR model fitting, their application is, of course, not limited to AR time series modeling.

In this work, we have applied the AIC to the problem of cluster validation. The

ol,t~cn is then ,s,'d to find the numOer of distinct image classes in an observed image.

There has been little previous work on the application of the AIC to cluster validation.

Sclove [171 demonstrated a way to use the AIC to verify image segmentation results.

After segmenting a synthetic image under the assumption of two and three c!asses, the

AIC was used to verify that the segmentation with three classes is a better segmentation.

Our results differ from Sclove's work in that we apply the AIC explicitly to the cluster

validation problem and, in the application to image segmentation, we use the AIC to decide

the proper number of classes in an image before segmentation. The explicit evaluation of

the AIC is obtained by an approximate maximum- likelihood (ML) estimation algorithm to

be described. We demonstrate the effective application of this procedure to both synthetic

data, where the true number of classes is known, and to real-world aerial photographs, in

which case the number of classes is unknown and can be assessed only subjectively.

In the next section, we will formulate the cluster validation problem as a mixture

model-fitting problem and describe how to determine the number of clusters by using the

AIC. Then, in Section 4.4.3, we will show some experimental results in which the number of

clusters is determined from synthetic data or real image data using the AIC criterion. We

will also show real-world image segmentation results obtained with the number of classes

determined by the AIC. Finally, a summary and conclusions are provided in Section 4.4.4.
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4...2 The Model Fitting Approach:

In this work, we determine the number of clusters from the observed data by find-

ing the best-fitting random mixture model for the data using the AIC criterion. Assume

that the sample data is represented by N independent and identically distributed (i.i.d.)

m-dimensional vectors, Y = {Y 1, Y2, ... , YN }. Furthermore, assume that a mixture distri-

bution can be used to model the probability distribution of yEY. That is,

K

P(Y) = Y, 7rkpk(y); yEY, (1)
k=I

where the pk(y)'s are individual m-dimensional component pdf's with 7rk's as the weights

such that

7rk > 0, for k = 1,2,..., K (2a)

and

K

Erk= 1. (2b)

k=1

The number K is the number of mixture components and is used as an indicator of the

number of clusters. That is, we consider each cluster in the data as a component of the

mixture distribution with K the number of clusters.

A special case of the mixture distribution is the Gaussian mixture where the indi-

vidual pdf's, Pk(y),k = 1,2,...,K, are all Gaussian [9]. For example, suppose K = 2

and m = 2 and suppose the components of the individual sample vectors are indepen-

dent. In this case the Gaussian mixture is completely defined by the parameter vector1

2 2 2a -= (m,m 2 ,a ,C 2 ,r) where mk and uk are each of dimension m = 2 representing,

respectively, the mean-value vector mk= (mkl,mk2) and variance vector 22. (I 1 , k2 )

associated with pk(y),k = 1, 2. The parameter vector, a, is of dimension K' = 9 in this

case.

'We will make use of this notation in describing some experimental results in the next

section.
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Under the mixture distribution modeling assumption, the problem of determining the

number of clusters for the observation Y becomes that of finding the best-fitting mixture

model for Y. The resulting K in that model would then be taken as a good estimate for

the number of clusters. According to Akaike, the best fit should be the one that maximizes

a generalized entropy or minimizes the AIC criterion defined as

AIC(K) -2log[maximum-likelihood of the model(K)] + 2K', (3a)

where

maximum-likelihood of the model(K) = PK(Y I (3b)

Here, A(K' is the maximum-likelihood (ML) estimate of the model parameter vector,

ML

a, of the mixture model given K, the number of components, and K' is the number of

independent parameters of the K-component mixture model. In the case of the Gaussian

a ML) consists of ML estimates for the parameters of the Gaussianmitue odlth vctr ML

component pdf's and the first K-i weights, 7r, r2, ... , rK-1. Now, for a given set of sample

data vectors, Y, the optimal estimate of the number of clusters is

Ko = arg min AIC(K), (4)
1<K<K,...

where K,,. is a prespecified upper limit for K. Rigorous justification of the AIC for

model fitting can be found in a series of papers by Akaike [10]-[14]. This method can be

easily implemented provided we can find the ML estimate of the mixture model parameters

which is known in statistical data analysis as the mixture estimation problem 9.

The ML estimation approach has been a very successful method in stochastic model

parameter estimation for the pdf's which contain only one component. Explicit solution

can often be found by solving the likelihood equation and the MI, estimate in many cases

is consistent 118. Even in the case where the true distribution of the data is not the same

as the model, the consistency property often still holds under nild regularity conditions

'19'. This result is especially important since, when we try to use a model L(- approximate

an unknown probability distribution using ML estimation, we hope tht the estimates are
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consistent. Unfortunately, these results do not readily extend to the mixture distributions

9. First of all, explicit solution is impossible even for the two-component case. Secondly,

the likelihood surface often has singularity points which makes numerical solution difficult.

A major reason for this is that the data is incomplete in the sense that we do not know

a priori to which cluster a data vector belongs. However, a number of approximate ML

algorithms do exist. One of the more popular methods is the so-called EM (expected

maximurn) algorithm '97. It has been shown that under mild regularity conditions it does

provide local maxima that are consistent. However, a disadvantage of the EM algorithm

is its relatively slow convergence.

In this work we use an approximate ML estimation scheme using a clustering algo-

rithm. First of all, the K-means clustering algorithm is applied to the data to divide the

data into K groups. Then each group is assumed to correspond to the sample data for

one and only one mixture component. A ML estimate is then evaluated on each group

separately to estimate the parameters for the corresponding mixture component. Finally,

a component weight i.e., the 7rk's can be estimated as the ratio of the number of samples

in a group tc the total number of samples. This approximation transforms the problem of

ML estimation of a mixture to that of ML estimation of several individual p.d.f.'s. It will

be shown in the next section, through experimental results, that it provides reasonably

good estimates. This scheme also converges fast since the clustering algorithm is known

to possess fast convergence properties.

The Gaussian mixture model is the most studied mixture model because it is a realistic

model for many applications and it is mathematically tractable. In this work, we make

explicit use of the Gaussian mixture model. To further simplify the mathematics, we

assume the components of the individual observation vectors are independent. 2 Under

these assumptions, the procedure of determining the number of clusters in a set of observed

data can be stated as follows:

1.) For a given K 1,2,..., K,,l,,X, apply the K-means clustering algorithm with the

number of classes preset to K.

'The component p.d.f.'s are then completely described by their mean value vectors 1
1k

2 (C2; C'2 a'
(mk, m ,, ... , rnk,,) and variance vectors (a 1 , 2 , . c' k - 1,2, ... , K.
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2.) Estimate the mean and variance vectors for each cluster and the weight of each cluster.

3.) Compute AIC(K).

4.) Select K0 as the estimate of the number of clusters in the data if it minimizes AIC(K)

for all K = 1,2, ... , K,,, .

There are two applicable expressions for the likelihood functional in the use of the

AIC criterion. If we consider the data vectors to be incomplete, that is, the class status of

the samples is unknown, we will have the standard likelihood expression for the mixture

which, from (1), becomes

N K

PK(YIa) = J E rkPk(Yi). (5)
i=l k=l

On the other hand, if we first classify the data by applying the K-means algorithm,

we in effect assign data vectors to hypotheses classes. In this case a data vector assigned

to class k can be considered coming from a particular class and has a probability Irk of

occurring. The corresponding expression for the likelihood functional for correctly classified

samples then becomes

K N1

PK(Y-a) = 17 7rIk JJ Pk(Yk , ), (6)
k=1 "=1

where Nk < N is the number of samples in the kik cluster and Yk,,j = 1,2,...,Nk are

data vectors associated with this cluster. Since we have used the K-means algorithm for

approximate ML estimation, each sample vector is assigned to a unique class. In what

follows, we will make use of the second likelihood functional as expressed by (6). The ML

estimate, AML , to be used in (3) in computing AIC(K) is then formed from the resulting

K class-conditional parameter estimates together with the estimated weights as described

above.

The method proposed here is quite general in that we can use assumptions for the

single mixture components other than Gaussian. Furthermore, other AIC related criteria,

such as BIC's, can be properly adapted to it. Finally, we note that the AIC criterion

has a useful intuitive appeal. More specifically, when two or more models are almost
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equa,, lkl.y, in the sense they have approximately the same maximum likelihoods, the

AIC criterion selects the one with the smaller number of parameters or the least complex.

1.4.3 Experimental Results:

In this section we demonstrate the effectiveness of the model-fitting approach to de-

termining the number of clusters from observed data. First, we perform an experiment on

synthetic data where the sample vectors are indeed generated from a Gaussian mixture

distribut ion as described in the last section. Then, we will apply the same approach to the

image segmentation problem to identify the number of image classes present in an obqprved

image. The synthetic data set is used to study the ideal performance of this approach,

while the image data is used to assess its application to a particular real-world problem.

We now present the results for these two cases separately.

A.) Synthetic Data.

In this experiment, three two-dimensional (m = 2) Gaussian mixture data sets with

two, three and four components, or clusters, are generated as shown in Fig. 4.4-1. We

choose the data to be two-dimensional since it's then easy to display on a plane. There are

two objectives of this experiment: first, to see if the approximate ML estimates provide a

reasonable estimate of the true model parameters and, secondly, to see whether the AIC

provides correct estimates of the number of clusters, even in the ideal case. The results

of the parameter estimates for all the test data sets under the correct assumptions on the

number of clusters are shown in Table 4.4-1. It can be observed that when the assumption

of the number of classes acting corresponds to the true but unknown value, the parameter

estimates are quite accurate. This indicates that the approximate ML estimation scheme

using clustering is quite effective. In Table 4.4-2, we have shown the AIC's computed for

all the test data under the assumptions of different number of clusters, with K,,,L,, = 8.

We find that the AC does make correct decisions each time. This indicates that when

the data is indeed a (;aussian mixture, the method proposed here tends to estimate the

number of clusters correctly. Additional examples are given for a much larger variety of

(;aussian mixtures in 19' with similar results.

I.) Application to liage Data.

In this experiment, we attempt to apply the method proposed in the previous section
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to a stochastic model-based image segmentation procedure developed previously in 2]-!.

In our work, we take the point of view that image segmentation is the process of assigning

the pixels of the image to a finite, and usually small, number of image model classes. In

a stochastic model-based approach, different image classes are modeled by random field

models. For simplicity, we consider the Gaussian model used in [2j for tonal properties

of the image classes. That is, each image class is modeled by an i.i.d. Gaussian random

field. Then, each image class can be characterized in terms of a model parameter vector

consisting of only two components: the mean and variance.

In the segmentation process, the pixels are assigned to model classes through a like-

lihood test based on the Gaussian model. In particular, a likelihood test for each pixel is

performed on the data contained in a decision window of a fixed size centered at that pixel

position. Before the image can be segmented, however, the model vectors corresponding

to different image classes have to be estimated from the image. It was suggested in [21 that

this can be realized by a clustering approach on the sample model vectors estimated from

a sliding estimation window on different spatial locations in the image and the resulting

cluster centers can then be taken as the model vectors for the image classes. The clustering

algorithm used was the K-means algorithm in which the number of image classes, or clus-

ters, needs to be specified beforehand. The method proposed here provides an objective

way to determine the number of image classes.

In Fig.'s 4.4-2a and 4.4-3a, we show two aerial photographs. The first contains a

building, roads and vegetation while the second contains an oil tank complex surrounded

by vegetation. The computed AIC's for different numbers of clusters are shown in Table

4.4-3 with K,,, = 10. The sliding estimation window is of size 16 x 16 pixels. The results

suggest that in the first image there are four tonal classes while for the second image

five tonal classes best fits the data. The images are segmented using the corresponding

model vectors estimated according to that suggested by the AIC criterion and are shown

in Fig.'s 4.4-2 and 4.4-3, along with the original images. In these segmentations different

tonal areas are well separated. For comparison purpose we have also shown the results

of the segmentation using from two up to six classes. It can be seen from the results for

both images that, when the assumed number of classes is smaller than that determined
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by the AIC, a number of significant regions of reasonably large size are missing from

the segmentation. On the other hand, when the number of classes is larger than that

suggested by the AIC, no significant change in segmentation will result from the increase

of the number of classes except the appearance of some noisy regions with small size.

This suggests that the AIC model-fitting approach is a reasonable objective approach for

practical applications such as image segmentation.

4-.4. Summary:

In this paper we described a model-fitting approach for determining the number of

clusters in observed random data and its applications to stochastic model- based image

segmentation. The problem, also known as cluster validation, is solved by findi::g a best-

fitting mixture distribution model to the observed data. The goodness of fit is determined

by the AIC criterion. An approximate ML parameter estimation scheme using clustering is

proposed to compute the AIC. Experimental results are also described to demonstrate the

ideal performance and practical applicability of this method. In the experiments, the AIC

correctly determines the number of clusters in the synthetic mixture data and provides a

subjectively reasonable number of classes for a number of real-world images. These results

indicate that the proposed approach is quite general and effective.

This work also brings up several interesting issues which need further investigation.

First of all, it would be of interest to apply the BIC criteria to cluster validation and

compare the results with that of the AIC. To do so we need to decide on what parameter

set the averaging of the likelihood is to be performed and how to implement the numerical

integration involved in the averaging. It would also be of interest to use the EM algorithm

as the estimation method for computing the AIC and compare the results on Gaussian

mixture model-fitting with those described in this paper. Finally, work is underway in

applying the model-fitting approach to image segmentation where the image classes are

modeled as autoregressive random fields [31. This work will be reported on at some later

time.
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Table 4.4-1

Parameter Estimates for the Synthetic

Gaussian Mixture Data: No. of samples=500

Values

Parameters Real Estimated

ml (4.00,4.00) (3.99,4.03)

m 2  (9.00,9.00) (8.89,9.12)

' (1.00,1.00) (1.04,1.06)

(1.00.1.00) (1.01,1.02)

(0.50,0.50) (0.49,0.51)

a.1 hvo-Cerponiert C'ausA5an AtLiiuqe

Values

Paramneters Real Estimated

' (4.00,4.00) (3.81.4.04)

Values ml (4.00.9.00) (3.87.9.16)

Parameters Real Estimated
______ _______3 (9.00.9.00) (8.92,9.09)

ml (4.00,4.09) (3.88,3.99) M4 (9.00.4.00) (9.03.4.00)

a2 (9.00,9.00) (8.89,9.11) 3 (.00.1.00) (0.99.0.98)

m3 (9.00.4.00) (9.02.4.06) (.0,1.00) (0.9,1.10)

0 (1.00,1.00) (0.01,1.05) (1.00,1.00) (1.00,0.90)

1 (.00,1.00) (3.0.00) = (1.00,1.00) (1.00.1.11)

-2

(1.00 . O0) (1.0.1.05) (0.25.0.25, (0.23.0.26,
I 0.25,0.25) 0.25. .26)

(0.33.0.33.0.331 (0.32,0.34,0.34)

. .14



Table 4.4-2

Computed AIC's for the Synthetic Data with Km, = 8.

K ALC(K) K f AIC(K) K AIC(K)

1 998 1 960 1 988

2 388(min) 2 712 2 852

3 463 3 586 (min) 3 805

472 4 617 4 717 (min)

5 490 5 681 5 753

6 549 6 703 6 782

7 580 7 692 7 806

557 8 709 8 803_

a) Two-component b) Three-componenc c) Four-component

Gaussian mixture Gaussian mixture Gaussian mixture

,1..1.1 5



Table 4.4-3

Computed AIC's for the Real Image Data with K,,a. = 10.

K AIC (K) K AIC(K)

1 526 1 882

2 534 2 768

3 511 3 705

4 506(min) 4 679

5 515 5 664 (min)

6 518 6 682

7 519 7 674

8 512 8 677

9 518 9 670

10 526 10 672

a) Road Scene b) Oil Tank Scene

•1 . I1G



Figure 4.4-1

Examples of Synthetic Gaussian Mixture Data
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Fig. -1.-1-2 Seguried R,) id eIr( it Accordi~gV I' X, W( (rit(rlonI.

a.) Original image b. 2-Class Segmentation

c. 3-C11a33 Segmentation j 4-Class Segmentation
Suggested by AIC criterion

e I 5 Class Segmentat nn f 6 Ciass 'Spqmentalion



Fig. *i13Segmiented Oil Tan~uk Scirme Accordig t) the A I( 'criteriOnl.

a )Originai image b 2-Class Segmentation

c 3-Class Segmentation d I4-Class Segmentation
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4.5 Overall Summary and Conclusions:

We have been very active over the last year in further refining our concept of a region-

based hierarchical approach to image interpretation. A major thrust has been in the

development and implementation of improved image segmentation schemes. We expect to

continue this effort into FY'88 and, in particular, to concentrate more on improvements

in the interpretation process. Issues to be investigated will include:

1. Investigate techniques for fusing information from different image segmentation

schemes to provide pertormance improvements over that achievable with any

single scheme.

2. Investigate improvements in the information theoretic criteria for unsupervised

determination of the number of different image classes present.

3. Develop and investigate techniques for choosing the appropriate model type for

stochastic model-based image segmentation schemes.

4. Devise and investigate techniques for incorporating knowledge information into

image segmentation schemes. In particular, investigate techniques for incorpo-

rating feedback from the interpretation process.

5. Additional, and perhaps more powerful, features have to be incorporated into the

image segmentation procedure.

6. Object detection and boundary extraction procedures need to be incorporated

into the image segmentation process.

7. More comprehensive region and mutual attributes need to be employed in the

image interpretation process.

8. The manual image segmentation procedure needs to be improved and interfaces

with knowledge database worked out.

9. Our raw image database needs to be expanded.

10. More general procedures for designing the clique functions need to be worked out.

11. Optimum annealing schedules for effecting the simulated annealing search proce-

dure need to be developed.
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12. Propagation of interpretations from one region to the next needs to be investi-

gated.

13. We need to provide feedback from the interpretation process to the segmentation

process to improve its performance.

14. We have to investigate how map data and/or archival, previously interpreted,

image data can be utilized to improve the photointerpretation process or to im-

plement change detection/interpretation procedures.
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